Spectral Theory of Orthogonal Polynomials

نویسنده

  • BARRY SIMON
چکیده

During the past dozen years, a major focus of my research has been the spectral theory of orthogonal polynomials—both orthogonal polynomials on the real line (OPRL) and on the unit circle (OPUC). There has been a flowering of the subject in part because of a cross-fertilization of two communities of researchers. I will discuss some aspects of this subject here; for a lot more, see my recent books on the subject. We begin with OPRL. If μ is a measure on C with ∫ |z| dμ < ∞ and so that μ is not supported on finitely many points, then {z}n=1 are independent in L (C, dμ) so one can use Gram–Schmidt to obtain monic and also normalized orthogonal polynomials. From the point of view of spectral/operator theory, two cases—OPRL (orthogonal polynomials on the real line) and OPUC (orthogonal polynomials on the unit circle)—are special because they have three-term recurrence relations which make the connection

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Multiple orthogonal polynomials

Results on multiple orthogonal polynomials will be surveyed. Multiple orthogonal polynomials are intimately related to Hermite–Pad e approximants and often they are also called Hermite–Pad e polynomials. Special attention will be paid to an application of multiple orthogonal polynomials and to analytic theory of two model families of general multiple orthogonal polynomials, referred to as Angel...

متن کامل

Schur Flows and Orthogonal Polynomials on the Unit Circle

Abstract. The relation between the Toda lattices and similar nonlinear chains and orthogonal polynomials on the real line has been elaborated immensely for the last decades. We examine another system of differential-difference equations known as the Schur flow, within the framework of the theory of orthogonal polynomials on the unit circle. This system can be displayed in equivalent form as the...

متن کامل

Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems

Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)dimensional case, the corresponding system can be extended to 2 × 2 matrix form. The factorization theorem of the Christoffel kernel for s...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009